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Figure 1. DiffVax is an optimization-free image immunization approach designed to protect images and videos from diffusion-based
editing. DiffVax demonstrates robustness across diverse content, providing protection for both in-the-wild (a) unseen images and (b)
unseen video content while effectively preventing edits across various editing methods, including inpainting (illustrated with a human in
the left column and a non-human foreground object in the right column) and instruction-based edits (right column).

Abstract

Current image immunization defense techniques against
diffusion-based editing embed imperceptible noise in tar-
get images to disrupt editing models. However, these
methods face scalability challenges, as they require time-
consuming re-optimization for each image—taking hours
for small batches. To address these challenges, we intro-

* Equal contribution
† T. Ozden worked on this project as an intern at UT Austin and UIUC.

duce DiffVax, a scalable, lightweight, and optimization-
free framework for image immunization, specifically de-
signed to prevent diffusion-based editing. Our approach
enables effective generalization to unseen content, reduc-
ing computational costs and cutting immunization time from
days to milliseconds—achieving a 250,000× speedup. This
is achieved through a loss term that ensures the failure of
editing attempts and the imperceptibility of the perturba-
tions. Extensive qualitative and quantitative results demon-
strate that our model is scalable, optimization-free, adapt-
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able to various diffusion-based editing tools, robust against
counter-attacks, and, for the first time, effectively protects
video content from editing. Our code and qualitative results
are provided in the supplementary.

1. Introduction
Recent advancements in generative models, particularly dif-
fusion models [22, 53, 60], have enabled realistic content
synthesis, which can be used for various applications, such
as image generation [4, 9, 30, 43, 55, 56, 71] and edit-
ing [7, 11, 21, 37]. However, the widespread availability
and accessibility of these models introduce significant risks,
as malicious actors exploit them to produce deceptive, real-
istic content known as deepfakes [48]. Deepfakes pose se-
vere threats across multiple domains, from political manip-
ulation [3] and blackmail [6] to biometric fraud [64] com-
promising trust in legal processes [15]. Furthermore, they
have become violent tools for sexual harassment through
the creation of non-consensual explicit content, victimizing
many people day by day [10, 14, 24]. Given the widespread
accessibility of diffusion models, the scale of these threats
continues to grow, underscoring the urgent need for robust
defense mechanisms to protect individuals, institutions, and
public trust from such misuse.

To address these challenges, a line of research has fo-
cused on deepfake detection [44, 47] and verification meth-
ods [18], which facilitate post-hoc identification. While ef-
fective for detection, these approaches do not proactively
prevent malicious editing, as they only identify it after it
happens. Another branch modifies the parameters of edit-
ing models [29] to prevent unethical content synthesis (e.g.
NSFW material); however, the widespread availability of
unrestricted generative models limits its effectiveness. A
more robust defense mechanism, known as image immu-
nization [33, 54, 57, 68], safeguards images from malicious
edits by embedding imperceptible adversarial perturbations.
This approach ensures that any editing attempts lead to un-
intended or distorted results, proactively preventing mali-
cious modifications rather than depending on post-hoc de-
tection. The subtlety of this protection is particularly valu-
able for large-scale, publicly accessible content—such as
social media—where user data is especially vulnerable to
malicious attacks. By uploading immunized images instead
of original ones, users can reduce the risk of misuse by
malicious actors, highlighting the practical potential of this
method for real-world applications.

However, existing image immunization approaches
against diffusion-based editing fail to simultaneously meet
all the criteria for an ideal model: (i) scalability to large-
scale content, (ii) imperceptibility of perturbations, (iii)
robustness against counter-attacks, (iv) video support, (v)
memory efficiency, and (vi) speed. (see Table 1). Photo-

Table 1. Comparison of immunization models. Overview of key
functionalities across PhotoGuard (PG), Distraction is All You
Need (DAYN), and DiffVax, including scalability, robustness
against attacks, video extension, open-source availability, GPU re-
quirements and runtime.

Functionality PG [57] DAYN [33]
DiffVax

(Ours)

Scalability ✖ ✖ ✔

Robustness
Against Attacks ✖ ✖ ✔

Video
Extension ✖ ✖ ✔

Open Source ✔ ✖ ✔

GPU (GB) 15GB 10GB 5GB
Runtime Days Days Milliseconds

Guard [57] (PG) embeds adversarial perturbations into tar-
get images to disrupt components of the diffusion model by
solving a constrained optimization problem via projected
gradient descent [35]. Although PhotoGuard represents the
first immunization model targeting diffusion-based editing,
it requires over 10 minutes per image and at least 15GB
of memory, making it computationally intensive and time-
consuming. To alleviate these demands, “Distraction is
All You Need” (DAYN) [33] proposes a semantic-based
attack that disrupts the diffusion model’s attention mech-
anism during editing. While this approach reduces com-
putational load, it remains time-intensive like PhotoGuard,
as it requires re-solving the optimization for each image.
Furthermore, both approaches are vulnerable to counter-
attacks, such as denoising the added perturbation and apply-
ing JPEG compression [58] to the immunized image. Con-
sequently, neither method is practical for large-scale appli-
cations, such as safeguarding the vast volume of image and
video data uploaded daily on social media.

To address these challenges, we introduce DiffVax, an
end-to-end framework for training an “immunizer” model
that learns how to generate imperceptible perturbations to
immunize target images against diffusion-based editing.
This immunization process ensures that when the immu-
nized image is input into a diffusion-based editing model,
the editing attempt fails. DiffVax is significantly more
effective than prior works in ensuring editing failure. Train-
ing is guided by two loss terms: (1) one to ensure that the
generated noise remains imperceptible, and (2) another to
enforce the failure of any attempted edits on the immu-
nized image Our trained immunizer model generalizes ef-
fectively to unseen data, requiring only a single forward
pass—completed within milliseconds—without the need
for time-intensive re-optimization. This efficiency makes it
a scalable solution for protecting large-scale content. More-
over, DiffVax enhances memory efficiency by eliminat-
ing the need for gradient calculations, setting it apart from
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previous approaches. It also achieves improved impercep-
tibility in generated perturbations and demonstrates robust-
ness against counter-attacks such as JPEG compression and
image denoising [58]. Importantly, our training framework
is adaptable to any diffusion-based editing method, estab-
lishing it as a universal tool (see Fig. 1, 2nd row: left column
for inpainting, right column for instruction-based editing).
Leveraging these advantages, we extend immunization to
video content for the first time, achieving promising results
that were previously unattainable due to the computational
demands of earlier methods. Consequently, DiffVax ful-
fills all criteria for an ideal model as outlined above. To ad-
vance research in this area, we also introduce a standardized
test benchmark with diverse prompts, enabling consistent
and fair evaluation in this emerging field. To summarize,
our contributions are as follows:

• We are the first to introduce an optimization-free image
immunization framework to prevent diffusion-based edit-
ing, drastically reducing inference time from days to mil-
liseconds and enabling real-time immunization by effec-
tively generalizing to unseen data.

• DiffVax achieves superior results with substantial
degradation of the editing operation, enhanced impercep-
tibility, and minimal memory requirement, demonstrating
resistance to counter-attacks, making it the fastest, most
cost-effective, and robust method available.

• For the first time, we extend immunization to video con-
tent, demonstrating promising results in video safety ap-
plications.

2. Related Works

Adversarial attacks Adversarial attacks on machine
learning models exploit vulnerabilities by generating pertur-
bations that lead models to produce incorrect outputs. Early
gradient-based methods introduced efficient techniques for
crafting adversarial examples by manipulating gradients
[17, 36]. Subsequent approaches refined these methods
to minimize the distortion required for successful attacks
[8, 40]. Generative model-based attacks advanced these
strategies by creating realistic adversarial examples, pos-
ing new challenges for robust image generation systems
[65]. Recent efforts focus on enhancing transferability
and efficiency, with techniques like momentum and ran-
dom search increasing attack effectiveness even with lim-
ited model access [1, 16]. Comprehensive robustness eval-
uations now utilize ensembles combining multiple attack
strategies [13]. Additionally, universal adversarial pertur-
bations (UAPs) and universal adversarial networks (UANs)
generate input-agnostic perturbations that generalize across
datasets and architectures [19, 41]. Our method draws inspi-
ration from the principles of UANs, extending this frame-
work to immunization against diffusion-based editing.

Preventing image editing The advent of latent diffusion
models (LDMs) has spurred demand for robust immuniza-
tion against unauthorized image edits. Early defenses tar-
geted generative adversarial network (GAN)-based models
with perturbations to block edits [2, 68]. Addressing diffu-
sion models’ unique challenges, PhotoGuard [57] embeds
adversarial perturbations to disrupt generative processes via
two methods: an encoder attack on the latent encoder and
a diffusion attack on the entire model. Despite its effec-
tiveness, PhotoGuard requires significant computation due
to gradient calculations across diffusion timesteps. To al-
leviate this, Lo et al. [33] propose an attention-distraction
method that corrupts intermediate attention maps, reducing
costs without full backpropagation. However, it depends
on the original text prompt and is limited when the prompt
changes. Alternative approaches like Glaze [59] degrade
outputs from fine-tuned models [28, 52], yet they are com-
putationally intensive and prone to counter-attacks, reduc-
ing scalability. In contrast, our proposed DiffVax method
addresses these challenges by employing a universal immu-
nizer requiring only a single forward pass and generaliz-
ing to unseen images. We further extend immunization to
video content, providing effective protection in large-scale,
dynamic contexts.

Diffusion-based image editing Diffusion models have
become powerful tools for various image editing tasks [23],
including inpainting [34, 63, 69], style transfer [20, 42, 63,
66], and text-guided transformations [7, 32, 51], achieved
by conditioning on specific prompts or regions within the
image. These models facilitate precise semantic and stylis-
tic alterations through mechanisms such as attention ma-
nipulation [46] and multi-step noise prediction. Current
approaches range from specialized, training-based mod-
els [12, 25] to adaptable, training-free techniques [38, 39]
that extend existing capabilities with minimal fine-tuning.
In our study, we use a stable diffusion inpainting model as
the primary editing tool and provide additional results using
InstructPix2Pix [7] (see Supplementary), demonstrating its
model-agnostic capabilities.

3. Methodology

3.1. Preliminaries

Image immunization Adversarial attacks exploit the vul-
nerabilities of machine learning models by introducing
small, imperceptible perturbations to input data, causing the
model to produce incorrect or unintended outputs [5, 61]. In
the context of diffusion models, such perturbations can be
crafted to disrupt the editing process, ensuring that attempts
to modify an adversarially perturbed image fail to achieve
intended outcomes. Given an image I, the goal is to trans-
form it into an adversarially immunized version, Iim, by
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Figure 2. Overview of our end-to-end training framework. The process begins with Stage 1, where the original image I is processed by
SAM [27] to generate a mask, and the immunizer model f(·; θ) produces immunization noise ϵim, which is then applied to the masked
region, resulting in the immunized image Iim. In Stage 2, the immunized image Iim is edited using a stable diffusion model SD(·) with
the provided text prompt (e.g., “a person in a fitness studio”), during which the loss terms are computed. The Lnoise term minimizes the
immunization noise ϵim to preserve the visual quality of the original image I, while the Ledit term ensures that ϵim effectively disrupts any
editing attempts.

introducing a perturbation ϵim:

Iim = I+ ϵim, subject to: ∥ϵim∥ < κ, (1)

where κ is the perturbation budget that constrains the norm
of the perturbation to ensure that it remains imperceptible.
The norm ∥ · ∥ could be chosen as ℓ1, ℓ2, or ℓ∞, depending
on the application.
Latent diffusion models LDMs [53] perform the gen-
erative process in a lower-dimensional latent space rather
than pixel space, achieving computational efficiency while
maintaining high-quality outputs. This design is ideal for
large-scale tasks like image editing and inpainting. Train-
ing an LDM starts by encoding the input image I0 into
a latent representation z0 = E(I0) using encoder E(·).
The diffusion process operates in this latent space, adding
noise over T steps to generate a sequence z1, . . . , zT , with
zt+1 =

√
1− βt zt+

√
βt ϵt, ϵt ∼ N (0, I), where βt is the

noise schedule at step t. The training aims to learn a denois-
ing network ϵθ that predicts the added noise ϵt by minimiz-
ingL(θ) = Et,z0,ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t)∥22

]
. In the reverse

process, a noisy latent vector zT ∼ N (0, I) is iteratively
denoised via the trained denoising network to recover z0,
which is decoded into the final image Ĩ = D(z0) with de-
coder D(·).

3.2. Problem Formulation

Consider an image I ∈ RH×W×C , where H , W , and C
represent the height, width, and channel dimensions, and
an adversarial agent equipped with a diffusion-based edit-
ing tool denoted as SD(·), specifically a stable diffusion in-
painting model [53] in our study, attempting a malicious
edit on an image using a prompt P to modify the unmasked
region, where the binary mask M ∈ {0, 1}H×W×C des-
ignates a specific region of interest or target area, with a
value of 1 corresponding to the target region and 0 indicat-
ing the background or irrelevant regions. Ideally, this target
region can represent any meaningful part of the image, such
as a human body or other sensitive objects. Our objective is
to immunize the original image I by carefully producing a

noise ϵim that satisfies two key criteria: (a) ϵim remains im-
perceptible to the user, and (b) the edited immunized image
Iim,edit fails to accurately reflect the prompt P applied by
the adversarial agent. In other words, the immunized image
disrupts the editing model SD(·) such that any attempt to
edit the image results in unsuccessful or unintended modifi-
cations. This approach ensures that current editing models
cannot modify the image. In this study, we focus on the hu-
man subject as the target region and use diffusion inpainting
as the editing method, given its particular suitability for ma-
licious editing activities. Additional results for other objects
and editing tools are also provided (see Supplementary for
more details).

3.3. Our Approach

Inspired by universal adversarial networks [19, 41], which
demonstrate that perturbations applicable across datasets
and architectures can be learned through training, we extend
this idea into the diffusion domain, aiming to develop a gen-
eralizable immunization strategy across diverse target im-
ages to protect against diffusion-based editing. The frame-
work consists of two stages: (Stage 1) generating noise with
the “immunizer” model to immunize the target image, and
(Stage 2) applying diffusion-based editing and computing
the loss, with both stages connected to enable training on a
dataset (Fig. 2).
Stage 1: Image immunization In the first stage of our al-
gorithm, we employ a UNet++ [72] architecture for the “im-
munizer” model f(·; θ) to generate the immunization noise
ϵim, which, when applied to the masked region, forms the
immunized image, denoted as Iim = I + ϵim ⊙M. No-
tably, there are two possible approaches for obtaining the
immunized image using f(·; θ). The model can either di-
rectly generate Iim = f(I; θ) or produce ϵim = f(I; θ),
which is then added to the input image I. We adopt the lat-
ter approach, as it preserves the original image structure by
avoiding direct processing of I, thereby preventing distor-
tions in the original image as an immunized image should
look identical to the input image I. After producing the
immunization noise ϵim, we multiply it with the mask M,
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Algorithm 1 End-to-end training framework
Input: Immunizer Model f(·; θ), Editing Model SD(·),

Dataset D, Dataset Size N , Loss weight α
for n = 1 ... N do

(In,Mn,Pn)← sample(D, n)
ϵnim ← f(In; θ)
Inim ← (In + ϵnim ⊙Mn).clamp(0, 1)
Inim,edit ← SD(Inim,∼Mn,Pn)
Lnoise ← normalize(∥(Inim − In)⊙Mn∥1)
Ledit ← normalize(∥Inim,edit ⊙ (∼Mn)∥1)
L ← α ∗ Lnoise + Ledit

θ ← θ − λ ∗ ∇θL
end for

targeting the region of interest (e.g. the face of a person).
The masked noise is then added to the input image I, and
the resulting values are clamped to the [0, 1] range. To en-
sure the noise remains imperceptible to the human eye, we
introduce the following loss:

Lnoise =
1

sum(M)
∥(Iim − I)⊙M∥1 (2)

whereLnoise penalizes deviations within the masked region,
ensuring that the change between the immunized image and
the original image is imperceptible.
Stage 2: Immunized image editing After obtaining the
immunized image Iim, the next step is to perform editing us-
ing the stable diffusion inpainting model SD(·). This model
takes immunized image Iim, mask M, and prompt P as
input, and performs editing in regions outside the masked
area. To ensure that the background of the edited image is
effectively distorted, we define the loss function as:

Ledit =
1

sum(∼M)
∥SD(Iim,∼M,P)⊙ (∼M)∥1, (3)

where ∼M represents the complement of the masked area
and SD(·) is the stable diffusion inpainting operation that
modifies the region ∼ M in Iim according to the prompt
P . This loss function is the key to our method, as it ensures
that the immunization noise disrupts the editing process by
forcing the unmasked regions to become a background filled
with 0s.
End-to-end training To address the speed limitations
of previous methods, we propose an end-to-end training
framework that combines the two described stages, as out-
lined in Algorithm 1. For training, we curate a dataset
of image, mask, and prompt tuples, represented as D =
{(Ik,Mk,Pk)}Nk=1. Specifically, we collect 1000 images
of individuals from the CCP [67] dataset and use the seg-
ment anything model (SAM) [27] to generate masks cor-
responding to the foreground objects in these images. To
ensure diverse text descriptions for the editing tasks, we
utilize ChatGPT [45] (see Supplementary for details). At

each training step, a sample is selected from the dataset and
initially processed by the immunizer model f(·; θ) to gener-
ate immunization noise ϵnim, which is added to the masked
region of the target image and then clamped. The result-
ing immunized image Inim is then passed through the edit-
ing model SD(·) to produce the edited immunized image
Inim,edit. The final loss function, L = α · Lnoise + Ledit,
is used for backpropagation with respect to the immunizer
model’s parameters, and gradient descent is applied. Back-
propagating through the stable diffusion stages allows the
immunizer to learn the interaction between the perturbation
and the generated pixels. Through this iterative process, the
immunizer model learns to generate perturbations that dis-
rupt the editing model. Following the insights from Photo-
Guard’s encoder attack, we do not condition the immunizer
model on text prompts, as the noise is empirically shown
to be prompt-agnostic. This approach is supported by both
PhotoGuard’s findings and our empirical results (see Sup-
plementary). Our end-to-end training framework is illus-
trated in Fig. 2.

4. Experimentation
Implementation details We train our immunizer model
for 350 epochs with a batch size of 5 on an NVIDIA A100
GPU. We set α = 4 and use the Adam [26] optimizer with
an initial learning rate of 0.00001. Training takes approxi-
mately 22 hours, utilizing 16-bit precision to reduce mem-
ory consumption and accelerate computation. For a stable
diffusion inpainting model, we employ a pre-trained Stable
Diffusion v1.5 inpainting model [53]. We collect a dataset
of 1000 human images from the CCP [67] dataset, which
is split into 80% for training (seen) and 20% for validation
(unseen).
Baselines We compare DiffVax against several exist-
ing image immunization approaches. As a baseline, we in-
clude Random Noise, which applies arbitrary noise to im-
ages as a naive defense mechanism. Additionally, we com-
pare DiffVax to two variants of the PhotoGuard [57] ap-
proach: PhotoGuard-E, which targets the latent encoder of
generative models by embedding adversarial perturbations
and PhotoGuard-D, that disrupts the entire generative pro-
cess. Moreover, to demonstrate the robustness of our immu-
nization approach against counter-attacks designed to by-
pass immunization protection, we develop a baseline where
image editing is performed after the immunized image
is passed through a convolutional neural network (CNN)-
based image denoiser [31], denoted as DiffVax w/ D. and
by compressing [58] the immunized image as JPEG, de-
noted as DiffVax w/ JPEG.
Evaluation metrics and dataset We focus on four key
aspects in evaluation: (a) the amount of editing failure,
where we follow previous approaches [57] and utilize
SSIM [62], PSNR and FSIM [70] metrics to measure the
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Figure 3. Qualitative results with DiffVax. Our method effectively immunizes (a) seen images and generalizes to (b) unseen images
with diverse text prompts. Additionally, it extends to (c) unseen human videos, demonstrating its adaptability to new content. Furthermore,
it supports various poses and perspectives, from full-body shots (a) to close-up face shots (c). For more, please see our Supplementary.

visual differences between the edited immunized image
and the edited target image; (b) imperceptibility, where the
amount of the immunization noise quantified by measur-
ing the SSIM between the original image and the immu-
nized image, denoted as SSIM (Noise); (c) the degree of
textual misalignment evaluated using CLIP [50] by mea-
suring the average similarity between the edited immunized
image and the text prompt, denoted as CLIP-T; and (d) scal-
ability by reporting the average runtime and GPU memory
required to immunize a single image on average from the
dataset. We divide the test dataset into two categories: seen,
which includes pairs of images, masks, and prompts that
were present together as a tuple during training, and un-
seen, which includes the case where neither the image nor
the prompt is present in the dataset. For both the seen and
unseen categories, we have 75 images in each.

Qualitative evaluation Fig. 1 and Fig. 3 illustrate the
qualitative results achieved by our method, with Fig. 4 com-
paring our results to those of baseline methods. Our model
effectively immunizes images against various editing tech-
niques, including inpainting (as shown in the left column

of Fig. 1) and InstructPix2Pix [7] (right column of Fig. 1. It
demonstrates a strong ability to generalize to previously un-
seen images and a wide range of prompts describing differ-
ent edits, accommodating various human perspectives, in-
cluding full-body and close-up shots (Fig. 3). Additionally,
although trained primarily on human subjects, our model
extends its robustness to non-human objects, such as the ea-
gle depicted in the right column of Fig. 1. Compared with
the baseline methods shown in Fig. 4, our approach quali-
tatively outperforms on both seen and unseen images, gen-
erating backgrounds that deviate significantly from the in-
tended edits, thereby demonstrating robust results across a
variety of text prompts. Notably, in many cases with our ap-
proach, it is impossible to infer the original prompt from the
immunized image background—a stark contrast to Photo-
Guard, which often retains discernible hints of the prompt.

Quantitative evaluation As shown in Table 2, DiffVax
achieves the lowest SSIM, PSNR, and FSIM values over-
all, securing second place in the SSIM metric for unseen
data, with a small margin behind PG-D., indicating that
malicious edits on immunized images are significantly dis-
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Table 2. Performance comparisons on images. The SSIM, PSNR, FSIM, SSIM (Noise), and CLIP-T metrics are reported separately for
the seen and unseen splits of the test dataset. Runtime and GPU requirements are measured as the average time (in seconds) and memory
usage (in MiB) needed to immunize a single image. The human study presents the average ranking of each method. “N/A” indicates that
the corresponding value is unavailable. The symbols ↑ and ↓ indicate the direction toward better performance for each metric, respectively.

Amount of Editing Failure Imperceptibility Text Misalignment Scalability Human Study

Immunization Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓ Runtime (s) ↓ GPU Req. (MiB) ↓ Average
seen unseen seen unseen seen unseen seen unseen seen unseen (Immunization) (Immunization) Ranking ↓

Random Noise 0.586 0.585 16.09 16.40 0.460 0.458 0.902 0.903 31.68 31.62 N/A N/A 3.74
PhotoGuard-E 0.558 0.565 15.29 15.63 0.413 0.408 0.956 0.956 31.69 30.88 207.00 9,548 3.33
PhotoGuard-D 0.531 0.523 14.70 14.92 0.386 0.379 0.978 0.979 29.61 29.27 911.60 15,114 2.63
DiffVax (Ours) 0.519 0.534 13.84 14.37 0.363 0.370 0.989 0.989 26.67 26.74 0.07 5,648 1.64

Table 3. Results on video editing. We report the average PSNR
score and total runtime for Random Noise, PhotoGuard-D, and
DiffVax on a video dataset consisting of 4 videos, each with 4
prompts and 64 frames.

Method PSNR ↓ Runtime ↓
Random Noise 19.54 N\A
PhotoGuard-D 16.32 64 hours
DiffVax 14.54 0.739 seconds

torted, even on previously unseen data—whereas baseline
methods, which require optimization to be re-run for each
image, do not differentiate between seen and unseen data.
Additionally, CLIP-T results, which measure textual mis-
alignment, further verify these findings by measuring the
misalignment semantically in the edited immunized images.
DiffVax outperforms the baselines by maintaining the
highest SSIM (Noise) values for both seen and unseen data,
highlighting its effectiveness in corrupting malicious edits
while keeping the immunized image imperceptible. In ad-
dition to its superior qualitative performance, DiffVax of-
fers a substantial advantage in speed and memory efficiency.
It completes the immunization process in just 0.07 seconds
for a single image on average—a dramatic improvement
over PhotoGuard-E’s 207.0 seconds and PhotoGuard-D’s
911.6 seconds. Furthermore, DiffVax requires only 5,648
MiB of GPU memory for single-image immunization, com-
pared to PhotoGuard-E’s 9,548 MiB and PhotoGuard-D’s
15,114 MiB. This combination of rapid runtime and re-
duced resource consumption makes DiffVax a practi-
cal solution for large-scale applications. We also con-
duct a user study with 67 participants on Prolific [49], in
which participants compare the “unrealisticness” level of
DiffVax, PhotoGuard-E, PhotoGuard-D, Random Noise,
and the edited image across 20 randomly selected image
pairs, including both seen and unseen samples. For each
model, we report the average rank, with our model achiev-
ing the top position with an average rank of 1.64, demon-
strating clear superiority over prior methods (Table 2), fol-
lowed by PhotoGuard-D with a rank of 2.63.

Video evaluation For the first time, we conduct a video
evaluation using a dataset of 4 videos, each consisting of
64 frames depicting a human activity and paired with 4
prompts. As no existing method directly applies a stable
diffusion inpainting model for training-free video editing,

Table 4. Ablation study. We report the SSIM and SSIM (Noise)
metrics for each loss term ablation, with results presented individ-
ually for the seen and unseen splits of the dataset.

Method SSIM ↓ SSIM (Noise) ↑
seen unseen seen unseen

DiffVax w/o Lnoise 0.521 0.532 0.785 0.786
DiffVax w/o Ledit 0.936 0.944 0.999 0.999

DiffVax 0.519 0.534 0.989 0.989

we employ a naive per-frame editing approach as our video
inpainting model to verify that our method is adaptable to
video data. We report the total runtime on the entire dataset
and the average PSNR metric for this evaluation. As shown
in Table 3, our model outperforms the baselines in PSNR
and demonstrates substantial improvements over the Photo-
Guard approach, reducing runtime from approximately 64
hours to just 0.739 seconds. These results underscore the
potential of our model as a pioneering solution for efficient,
large-scale immunization. Furthermore, our model effec-
tively generalizes to unseen poses and identities featured
in the video content, as illustrated in Fig. 1 and Fig. 3 (c).
This ability highlights the model’s robustness against mi-
nor structural variations in the target image, such as facial
expressions and body movements across frames in human
videos. This robustness to subtle changes in structure re-
inforces our model’s effectiveness for dynamic, real-world
applications.

Ablation study To assess the contribution of each com-
ponent in our framework, we conduct an ablation study by
individually removing Ledit and Lnoise. As shown in Table 4,
when Lnoise is removed, the model achieves slightly better
performance on unseen data in terms of failed immunized
editing (measured by SSIM). However, the immunization
noise is no longer imperceptible, as indicated by the change
in the SSIM (Noise) metric. Conversely, when Ledit is re-
moved, the SSIM (Noise) metric reaches its highest value,
indicating minimal noise, but the model fails to prevent ma-
licious editing, as reflected in the SSIM metric. Thus, com-
bining both terms in the final loss function is crucial for bal-
ancing imperceptibility and robustness in the training pro-
cess (see Supplementary for analysis on α value selection).

Robustness analysis In Table 5, we report the SSIM,
SSIM (Noise), and CLIP-T values for the edited immu-
nized images where immunized images are passed through
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Figure 4. Qualitative comparison of edited images across immunization methods. This figure shows results of different immunization
methods: Random Noise, PhotoGuard-E, PhotoGuard-D, and our proposed method, DiffVax. Results for (a) seen and (b) unseen
images are shown, with different prompts applied to each (right side). The first column contains the original images, while subsequent
columns show the edited outputs under different settings, as depicted on the top. Note that DiffVax is substantially more effective than
PhotoGuard-E and -D in degrading the edit.

Table 5. Performance comparisons on edits with counter-attacks.
We report the SSIM, SSIM (Noise) and CLIP-T metrics for the
denoiser (D.) and JPEG compression (JPEG) counter-attacks sep-
arately for the seen and unseen splits of the test dataset.

Method SSIM ↓ SSIM (Noise) ↑ CLIP-T ↓
seen unseen seen unseen seen unseen

PG-D w/ D. 0.702 0.709 0.966 0.965 31.48 31.20
DiffVax w/ D. 0.552 0.565 0.960 0.960 27.32 27.74

PG-D w/ JPEG 0.664 0.674 0.956 0.956 32.15 32.48
DiffVax w/ JPEG 0.530 0.545 0.959 0.959 28.65 28.27

the counter attacks (denoiser is used or JPEG compression
is applied). The results of DiffVax w/ D. and DiffVax
w/ JPEG outperform PhotoGuard-D w/ D. and PhotoGuard-
D w/ JPEG respectively. Unlike DAYN [33] and Photo-
Guard [57], which are susceptible to counter-attacks such
as denoising models or JPEG compression that can nullify
the immunization noise [58], our approach demonstrates ro-
bustness against such attacks, effectively overcoming these
limitations. Additional qualitative results are shown in
Fig. 5, where the PhotoGuard model fails under (a) the use
of a denoising model and (b) JPEG compression applied
to the immunized image. However, our model successfully
withstands these counter-attacks and continues to prevent
malicious editing effectively.

Limitations and future work While DiffVax offers
optimization-free protection against diffusion-based edit-
ing, its current design operates on a per-editing-tool basis,
requiring separate training for each tool, which limits its
ability to generalize across multiple editing tools simulta-
neously. Future work will aim to develop a more universal
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Figure 5. Qualitative results of counter-attacks on immuniza-
tion methods. The first row presents the results when an off-
the-shelf denoiser is used to counter-attack the immunized image,
while the second row shows results with JPEG compression. The
2nd and 3rd columns display the edited immunized image and the
edited attacked immunized image for PhotoGuard-D, whereas the
4th and 5th columns show these results for DiffVax. Note that
PhotoGuard-D is highly vulnerable to these counter-attacks.

immunization strategy to enhance scalability across diverse
models. Additionally, we plan to extend this work by inte-
grating our framework with a range of video editing tools.

5. Conclusion

In this work, we present DiffVax, an optimization-free
image immunization framework designed to protect images
from diffusion-based editing. Our approach centers on gen-
erating imperceptible noise that, when applied to an im-
age, disrupts diffusion-based editing tools, providing pro-
tection with minimal computational overhead. Our immu-

8



nization process requires only a single forward pass, making
DiffVax highly scalable for large-scale applications. Our
training framework introduces a loss term, enabling the im-
munizer model to generalize across unseen data and diverse
prompts. Leveraging these strengths, we extend our frame-
work to video content, demonstrating promising results for
the first time. Furthermore, DiffVax is adaptable to any
diffusion-based editing tool and has proven robust against
counter-attacks, effectively safeguarding against diffusion-
based edits. Overall, DiffVax sets a new benchmark for
scalable, optimization-free, and effective content protec-
tion, offering a practical solution for real-time applications.
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Optimization-Free Image Immunization Against Diffusion-Based Editing

Supplementary Material

The supplementary material is organized as follows:

• Section S.1 demonstrates additional comparisons with ex-
isting methods, results with a different editing tool and
editing non-human objects.

• Section S.2 details the dataset setup and prompt genera-
tion process.

• Section S.3 presents experiments that highlight the
prompt-agnostic nature of the immunization noise, fur-
ther validating its generalization capabilities.

• Section S.4 provides an ablation study, analyzing the im-
pact of the loss weight on the balance between impercep-
tibility and editing disruption.

You can also find our demo code and the complete im-
munized videos along with their corresponding video ed-
its in the provided zip file, located in the ‘supp/code’ and
‘supp/videos’ folders, respectively.

S.1. Additional Qualitative Results

Additional results Fig. 7 presents additional qualitative
results of our model across diverse scenarios and prompts.
These results highlight the model’s ability to perform effec-
tively on unseen content.

Additional comparison Fig. 8 illustrates additional qual-
itative comparison with our baselines. This comparison
highlights how DiffVax consistently outperforms existing
methods in disrupting malicious edits visually.

Additional results with InstructPix2Pix To demonstrate
the model-agnostic capabilities of DiffVax, we evaluate
it using a different diffusion-based editing tool, Instruct-
Pix2Pix [7], a widely used text-guided editing method.
As shown in Fig. 9, DiffVax effectively disrupts edits
generated by InstructPix2Pix. This experiment highlights
DiffVax’s versatility in protecting against a range of edit-
ing techniques.

Additional results with non-human objects To assess
DiffVax’s ability to generalize beyond human-centric
data, we perform experiments on non-human objects, such
as animals. As shown in Fig. 10, DiffVax effectively
immunizes these objects, preventing malicious edits while
maintaining imperceptibility. These results further validate
its broad applicability and zero-shot capabilities across en-
tirely different domains of objects.

Qualitative immunization results To validate the imper-
ceptibility of the noise introduced by DiffVax, we present
visualizations of the immunized images in Fig. 11, where
the immunization is performed using both Photoguard-D

Table 6. Quantitative results of ablation study to determine the
weight of Lnoise, α, where L = α ·Lnoise +Ledit. Metrics highlight
the impact of varying weights on the balance between impercepti-
bility and disruption.

Method SSIM ↓ PSNR ↓ SSIM (Noise) ↑
DiffVax w/ α = 2 0.536 14.47 0.987
DiffVax w/ α = 4 0.588 15.38 0.993
DiffVax w/ α = 6 0.625 16.23 0.996

and DiffVax. The noise introduced by DiffVax is vi-
sually indistinguishable, ensuring minimal perceptual im-
pact on the original images. This is further supported by the
SSIM (Noise) metric discussed in the quantitative evalua-
tion section of the main paper.

S.2. Dataset Setup

Our dataset consists of 1,000 images, each associated with
two prompts, resulting in a total of 2,000 prompts. We split
the dataset into 80% for the training set (seen) and 20% for
the validation set (unseen). The prompt set was constructed
using ChatGPT [45], specifically by generating prompts de-
signed for background editing. A total of 1,000 prompts
were collected and subsequently split into 80% for the train-
ing set (seen) and 20% for the validation set (unseen). Fi-
nally, we sampled two random prompts for each image in
the dataset, ensuring the prompts corresponded to whether
the image was categorized as seen or unseen.

S.3. Prompt-Agnostic Immunization Experi-
ment

We conduct additional experiments to demonstrate that the
noise produced by our DiffVax (and consequently the im-
munized images) is prompt-agnostic. To achieve this, we
train DiffVax three times, using a different image for each
training setup. In each experiment, we use a single image
with 100 seen prompts for training and evaluate it on 75
seen prompts and 75 unseen prompts (not included in the
training set). The results are then averaged across all im-
ages for each prompt. As shown in Fig. 6, the quantitative
results for seen and unseen metrics are highly similar, and
the low variances further confirm that the noise generalizes
effectively across diverse prompt conditions.

S.4. Loss Weight Selection

The hyperparameter α in DiffVax’s loss function gov-
erns the trade-off between imperceptibility and edit dis-
ruption. Specifically, α is defined in the loss function as
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Figure 6. Experiment results for prompt-agnostic noise. We
present our performance metrics between prompts for 75 prompts
seen in training (blue color) and 75 prompts unseen in training
(orange color). PSNR and CLIP-T values are divided by 50 for
visualization purposes. We can see that the two distributions are
almost identical, suggesting that our method performs similarly
across all prompts, suggesting the prompt-agnostic nature of our
DiffVax.

L = α · Lnoise + Ledit, where it balances these two objec-
tives: a higher α results in more imperceptible noise but
less disruption to edits, while a lower α enhances edit dis-
ruption at the expense of making the noise more perceptible.
To identify the optimal weight α for Lnoise before general-
izing to all images, we conduct an ablation study. In this
study, we train DiffVax on a smaller subset of 100 im-
ages, experimenting with different α values (2, 4, and 6).
As shown in Table 6, α = 4 provides the optimal balance,
achieving strong disruption while maintaining impercepti-
bility. We select α = 4 because the difference in the SSIM
(Noise) score between α = 4 and α = 6 is negligible, i.e.
the noise is already imperceptible at α = 4, as confirmed by
our qualitative evaluation on a subset of the dataset. There-
fore, increasing the weight on the noise loss for better im-
perceptibility is unnecessary. Additionally, the editing met-
rics degrade significantly for α = 6, further justifying our
choice of α = 4.
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Figure 7. Additional qualitative results with DiffVax. Each row shows a different prompt and image pair, demonstrating DiffVax’s
capability to consistently prevent malicious edits. Notably, even with varied and challenging prompts, the edits generated from the protected
content are disrupted, underscoring the robustness of our approach.
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Figure 8. Additional qualitative comparison between benchmarks and DiffVax. Each row represents a unique prompt-image pair, while
the columns show outputs for different immunization methods. DiffVax consistently produces better results, effectively disrupting edits
while preserving image quality.
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Figure 9. Qualitative results using the InstructPix2pix [7] editing model with DiffVax. Our approach successfully disrupts edits by this
editing method, further validating its generalizability.
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Figure 10. Qualitative results for non-person objects edited using DiffVax. These experiments show that DiffVax generalizes well
beyond human-centric data.
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Figure 11. Comparison of immunization noise. The difference between the original image and the immunized versions (Photoguard-D
and DiffVax) is visualized. DiffVax achieves imperceptible immunization noise, preserving the original image’s visual fidelity.
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